GoldenBraid 2.0: A Comprehensive DNA Assembly Framework for Plant Synthetic Biology1[C][W][OA]

نویسندگان

  • Alejandro Sarrion-Perdigones
  • Marta Vazquez-Vilar
  • Jorge Palací
  • Bas Castelijns
  • Javier Forment
  • Peio Ziarsolo
  • José Blanca
  • Antonio Granell
چکیده

Plant synthetic biology aims to apply engineering principles to plant genetic design. One strategic requirement of plant synthetic biology is the adoption of common standardized technologies that facilitate the construction of increasingly complex multigene structures at the DNA level while enabling the exchange of genetic building blocks among plant bioengineers. Here, we describe GoldenBraid 2.0 (GB2.0), a comprehensive technological framework that aims to foster the exchange of standard DNA parts for plant synthetic biology. GB2.0 relies on the use of type IIS restriction enzymes for DNA assembly and proposes a modular cloning schema with positional notation that resembles the grammar of natural languages. Apart from providing an optimized cloning strategy that generates fully exchangeable genetic elements for multigene engineering, the GB2.0 toolkit offers an evergrowing open collection of DNA parts, including a group of functionally tested, premade genetic modules to build frequently used modules like constitutive and inducible expression cassettes, endogenous gene silencing and protein-protein interaction tools, etc. Use of the GB2.0 framework is facilitated by a number of Web resources that include a publicly available database, tutorials, and a software package that provides in silico simulations and laboratory protocols for GB2.0 part domestication and multigene engineering. In short, GB2.0 provides a framework to exchange both information and physical DNA elements among bioengineers to help implement plant synthetic biology projects.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GoldenBraid 2.0: a comprehensive DNA assembly framework for plant synthetic biology.

Plant synthetic biology aims to apply engineering principles to plant genetic design. One strategic requirement of plant synthetic biology is the adoption of common standardized technologies that facilitate the construction of increasingly complex multigene structures at the DNA level while enabling the exchange of genetic building blocks among plant bioengineers. Here, we describe GoldenBraid ...

متن کامل

GoldenBraid: An Iterative Cloning System for Standardized Assembly of Reusable Genetic Modules

Synthetic Biology requires efficient and versatile DNA assembly systems to facilitate the building of new genetic modules/pathways from basic DNA parts in a standardized way. Here we present GoldenBraid (GB), a standardized assembly system based on type IIS restriction enzymes that allows the indefinite growth of reusable gene modules made of standardized DNA pieces. The GB system consists of a...

متن کامل

GB3.0: a platform for plant bio-design that connects functional DNA elements with associated biological data

Modular DNA assembly simplifies multigene engineering in Plant Synthetic Biology. Furthermore, the recent adoption of a common syntax to facilitate the exchange of plant DNA parts (phytobricks) is a promising strategy to speed up genetic engineering. Following this lead, here, we present a platform for plant biodesign that incorporates functional descriptions of phytobricks obtained under pre-d...

متن کامل

MISSA 2.0: an updated synthetic biology toolbox for assembly of orthogonal CRISPR/Cas systems

Efficient generation of plants carrying mutations in multiple genes remains a challenge. Using two or more orthogonal CRISPR/Cas systems can generate plants with multi-gene mutations, but assembly of these systems requires a robust, high-capacity toolkit. Here, we describe MISSA 2.0 (multiple-round in vivo site-specific assembly 2.0), an extensively updated toolkit for assembly of two or more C...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013